Electromagnetic Waves

Displacement current

- It is the current that exists in the region where the electric field and the electric flux is changing with time.
- The displacement current is given by $ID=\varepsilon 0d\Phi Edt$
- ο where,ε₀ = absolute permittivity of free space,
- \circ d Φ Edt= time rate of change of the flux.

Ampere-Maxwell's Law

- According to this law the line integral of the magnetic field($B\rightarrow$) over a closed path is equal to μ_0 times the sum of the conduction current(I) and the displacement curent (I_D)
- $\oint B \rightarrow .dl \rightarrow = \mu 0I + \epsilon 0d\Phi Edt$

Electromagnetic waves

- These are the waves in which the electric and the magnetic field vary sinusoidally at right angle to each other as well as to the direction of propagation.
- The speed of electromagnetic waves in free space is given by $c=1\mu0\epsilon0=3\times108$ ms-1.
- For an electromagnetic wave travelling along positive Z-axis, electric field oscillates along X-axis and is given by $E_x = E_0 \sin(kz \omega t)$ and magnetic field oscillates along Y-axis and is given by $B_y = B_0 \sin(kz \omega t)$.
- The relation between the amplitudes of magnetic and electric fields is The intensity of electromagnetic wave is given by $12\epsilon02E02c$.
- The velocity of light in a material medium is given by

$$v = \frac{1}{\sqrt{\mu \in \Omega}}$$

Here.

 \in = permittivity of material medium

 $\boldsymbol{\mu}$ = permeability of material medium

- Electromagnetic waves carry energy and momentum and they also exert pressure, called radiation pressure.
- When the total energy (*U*) is transferred to a surface in time *t*, the magnitude of the total momentum delivered to the surface is given by

$$p = \frac{U}{c}$$
, where $c = \text{speed of light}$

- Hertz set up an experiment in order to produce and detect electromagnetic waves. In this experiment, a high voltage source causes spark to oscillate and, thus, electromagnetic waves are produced by the oscillating spark.
- Different electromagnetic waves:

	Туре	Wavelength range
(a)	Radio waves	>0.1 m
(b)	Microwave	0.1 m to 1 mm
(c)	Infra-red	1 mm to 700 nm
(d)	Visible light	700 nm to 400 nm
(e)	Ultra-violet	400 nm to 1 nm
(f)	X-rays	1 nm to 10 ⁻³ nm
(g)	Gamma rays	<10 ⁻³ nm

• Uses of electromagnetic radiations:

Electromagnetic radiations	Uses
Visible Light	In photography, in photosynthesis in plants
VISIBLE LIGHT	and in enabling us to see objects around us
	to identify molecular structure of
Infrared	compounds, ion long distance photography,
	diagnosing tumors, in TV remote and solar
	energy operated devices.
	Used as sterilizer, in fluorescent lamps,
UV	treatment of diseases skin and bone, in
	radiography, to study of crystal structure.
	in treatment of cancer and skin diseases,
X-rays	locate fractured bones, in radiography, to
	study of crystal structure.
	in treatment of cancer, used as catalyst in
γ-rays	manufacturing of some chemicals, to produce
	photoelectric effect, and in radiography.

Microwave	In RADAR, satellite communication and ovens.
Radio wave	In communication, TV and Radio
	broadcasting.

